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Abstract. This paper proposes a new regularization term for optical
flow related problems. The proposed regularizer properly handles rota-
tion movements and it also produces good smoothness conditions on the
flow field while preserving discontinuities. We also present a dual for-
mulation of the new term that turns the minimization problem into a
saddle-point problem that can be solved using a primal-dual algorithm.
The performance of the new regularizer has been compared against the
Total Variation (TV) in three different problems: optical flow estimation,
optical flow inpainting, and optical flow completion from sparse samples.
In the three situations the new regularizer improves the results obtained
with the TV as a smoothing term.

1 Introduction

The optical flow problem, also called motion estimation, is a key problem in
computer vision. Its aim is to recover the apparent motion field of two consecutive
frames. It is a classic ill-posed problem, related to the aperture problem. Thus,
additional constraints are made in order to regularize the problem and single
out a solution. Horn and Schunk (HS) [1] proposed to compute the flow field
as a variational problem, where the searched vector field u corresponds to the
minimum of an energy functional. Their energy model has two parts: a fidelity
data term imposing the brightness constancy assumption, and a regularization
term. The HS model incorporates quadratic terms in both parts (regularizers and
fidelity data term), so it does not allow discontinuities in the flow field. Many
models, during the last thirty years, have been developed to avoid the previous
problem. Several robust estimators have replaced the original quadratic norm [2],
either in the data term [3] or regularization term. For the regularization term,
anisotropic diffusion (image-driven) [4–7], second order smoothness assumptions
[8] and isotropic diffusion as the Total Variation (TV) [9, 10] have been proposed.
For static scenes, the epipolar geometry can be used as a weak prior [11] or
to define an over-parameterized optical flow whose parameters are regularized
instead of the flow [12].

Optical flow regularization terms are also useful for motion inpainting, where
the optical flow in the missing region is completed by looking for a smooth flow
that matches the motion in the known region. Motion inpainting has been applied
for completing the optical flow in regions of low confidence due to occlusions,
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transparencies, etc [13]. It has also been used for video stabilization [14] and for
video inpainting [15].

Total Variation is one of the most used regularizers due to its nice properties
such as its ability to recover the image discontinuities, and the existence of
efficient and robust numerical schemes with guaranteed convergence. However,
it suffers from staircasing effects and does not properly handle rotations.

Our contribution in this paper is a new regularization term which is invariant
to infinitesimal flow rotations and which is able to preserve discontinuities/jumps
in the flow field. The proposed regularizer does not increase the energy of the
functional when the flow field is a rotation movement and, moreover, it keeps
some nice properties of the TV, providing a smooth flow field that preserves
discontinuities. Real scenes usually contain rotation movements, sometimes at
an infinitesimal level, and therefore the use of the proposed term could help to
obtain accurate and realistic optical flows. It has been tested in three different
optical flow related problems: motion estimation, motion inpainting, and mo-
tion reconstruction from sparse samples. In the three kinds of applications it
outperforms the results obtained by the TV.

The paper is organized as follows: In Sect. 2 we give the theoretical motivation
for the new regularization term. In Sect. 3 we describe a variational model for
the optical flow estimation and how to minimize its energy. In Sect. 4 we provide
details of the numerical implementation. Some experiments are presented in Sect.
5. Finally, in Sect. 6 we present the main conclusions.

2 Motivation for the Regularizer

Let U : R3 → R3 be the velocity vector field of a fluid in R3. For U smooth
enough, we consider a first-order Taylor approximation of U ,

U(x + h) = U(x) + JxU(x)h + o(|h|) for h→ 0 (1)

where x = (x, y, z),h = (h1, h2, h3) and JxU(x) is the Jacobian matrix at the
point x. For h small enough, let us approximate

U(x + h) ≈ U(x) + JxU(x)h. (2)

The first term at the right-hand side of the above equation represents a trans-
lation. The second term provides information on the rotation and deforma-
tion movement (scaling and shearing). A matrix can be decomposed in two
parts, the symmetric and the antisymmetric part. In our case, let us denote
by D = 1

2

(
JxU(x) + JxU(x)T

)
the symmetric part of JxU(x) and by C =

1
2

(
JxU(x)− JxU(x)T

)
the antisymmetric one. The symmetric part measures

the area change ratio (divergence) while the antisymmetric part describes the
infinitesimal rotation of the vector field (curl) [16]. It is easy to see that the pre-
vious argument is valid for R2. With this idea in mind, we propose to use as a
motion regularizer a measure that does not penalize infinitesimal rotations and,
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as we will see, still produces good smoothness conditions and is able to preserve
discontinuities/jumps in the flow field.

We propose the following regularization term

EDu
(u) ≡

∫
Ω

∥∥∥∥1

2

(
Du+DuT

)∥∥∥∥
F

dx (3)

where, for smooth functions, Du =

(
u1x u1y
u2x u2y

)
, being u = (u1, u2) : Ω → R2 the

optical flow; ||.||F denotes the Frobenius norm. Let us recall that the Frobenius

norm can be defined as ‖A‖F = 〈A,A〉1/2F , where 〈A,B〉F = Trace(AtB).
For u ∈ L1(Ω,R2), EDu(u) can be defined by its dual representation as

EDu(u) = sup
‖ξ‖F≤1

∫
Ω

〈u1,div (ξ11, ξ12)〉+ 〈u2,div (ξ12, ξ22)〉dx, (4)

where the supremum is taken over all ξ ∈ C1
c (Ω;Sym(R2×2)) s.t. pointwise

‖ξ(x)‖F ≤ 1. We can restrict ξ to be a symmetric matrix due to the following
Lemma.

Lemma 1. If ξ and C are symmetric and antisymmetric 2×2 matrices, respec-
tively, then 〈C, ξ〉F = 0.

For u, smooth enough, (4) can be writen as

EDu
(u) = sup

‖ξ‖F≤1

∫
Ω

〈1
2

(
Du+DuT

)
, ξ〉F dx. (5)

The proposed regularization term is related to the symmetric part of the follow-
ing term based on the Frobenius norm which, for u smooth enough and using
dual variables, can be written as∫

Ω

‖Du‖F dx = sup
‖ξ‖F≤1

∫
Ω

〈Du, ξ〉F dx, (6)

with ξ ∈ C1c (Ω;R2×2). This term has been called TV`2(u) in the paper [17].
Let us remark that, if u is a rotation flow such as u(x1, x2) = (−x2, x1),

then EDu
(u) vanishes. Moreover, as in [17], for a translation of an object in a

static background, our term handles different directions of translation equally.
In a different context to ours, the authors in [18] use the idea of regularizing the
symmetric part of the deformation.

3 Optical Flow Functional

In this section we present the proposed model to estimate the optical flow, and
how to minimize its energy.
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3.1 The Model

To show the benefits of our term, we build up from a well-known optical flow
model [10] that uses TV as the regularization term and an L1 data term

min
u

∫
Ω

(|∇u1|+ |∇u2|+ λ |I1(x+ u)− I0|) dx, (7)

where I0, I1 are two consecutive frames and u = (u1, u2) is the estimated optical
flow between them.

We replace the Total Variation as regularizing term by the new flow-rotation-
invariant-regularizer defined by (3). Then, in order to compute the optical flow
u = (u1, u2) between two consecutive frames I0 and I1 of a video sequence, we
propose to minimize the following energy∫

Ω

∥∥∥∥1

2

(
Du+DuT

)∥∥∥∥
F

dx+ λ

∫
Ω

|I1(x+ u)− I0(x)|dx. (8)

The use of L1 type-norm measures has proven a good performance in front
of L2 norms. Unfortunately, it increases the difficulty when minimizing the func-
tional due to its non differentiability. We introduce an auxiliar variable v repre-
senting the optical flow, as in [10], and we penalize its deviation from u. Thus,
we minimize the energy∫

Ω

∥∥∥∥1

2

(
Du+DuT

)∥∥∥∥
F

dx+ λ

∫
Ω

|I1(x+ v)− I0(x)|dx+
1

2θ

∫
Ω

(u− v)
2
dx (9)

with respect to u and v.

Notice that by minimizing this energy we do not impose regularization of the
skew symmetric part of the Jacobian. Indeed, given any function f of Bounded
Variation, the symmetric part of the Jacobian of the deformation (f(x2),−f(x1))
vanishes. Therefore, in order to prevent an irregular behavior of this part of the
flow field, one can add to the functional, e.g., an additional classical TV term.
In any case, the experiments show that the proposed term alone keeps some nice
properties of the TV providing a smooth flow field that preserves discontinuities.

This energy can be minimized by an alternating minimization procedure. On
the other hand, to minimize (9) with respect to v, we linearize I1(x+ v) around
a given optical flow map u0 using first order Taylor approximation. Therefore,
the expression in the fidelity data term can be approximated by

ρ(v) := I1(x+ u0) + 〈∇I1(x+ u0), (v − u0)〉 − I0(x). (10)

Then, our functional (9) becomes∫
Ω

∥∥∥∥1

2

(
Du+DuT

)∥∥∥∥
F

dx+ λ

∫
Ω

|ρ(v)|dx+
1

2θ

∫
Ω

(u− v)
2
dx. (11)
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3.2 Minimizing the Energy

The energy (11) can be minimized by alternating steps updating either u or v
in every iteration. The minimization procedure is

1. For v fixed, minimize (11) with respect to u.
Chambolle and Pock proposed a primal-dual algorithm to minimize the ROF
model [19]. It is based on a dual formulation of the TV [20]. Following the
ideas of [19], we reformulate the optical flow model as a min-max problem
incorporating dual variables. Then, our minimization problem (11) can be
solved as a saddle-point problem. For v fixed, we solve

min
u

max
ξ

∫
Ω

〈1
2

(
Du+DuT

)
, ξ〉dx+

∫
Ω

1

2θ
(u− v)

2
dx (12)

where the dual variables are ξ =

(
ξ11 ξ12
ξ12 ξ22

)
and satisfy ||ξ||F ≤ 1. Let us

notice that, using previous Lemma 1, we can restrict ξ to be a symmetric
matrix.

Proposition 1. The solution of (12) is given by the following iterative scheme

ξn+1
11 =

ξn11 + τun1x
max(1, ||ξ||2)

(13)

ξn+1
22 =

ξn22 + τun2y
max(1, ||ξ||2)

(14)

ξn+1
12 =

ξn12 + τ
2

(
un1y + un2x

)
max(1, ||ξ||2)

(15)

un+1
1 = un1 − σ

(
(un1 − v1)

θ
− div (ξn11, ξ

n
12)

)
(16)

un+1
2 = un2 − σ

(
(un2 − v2)

θ
− div (ξn12, ξ

n
22)

)
(17)

un+1
1 = 2un+1

1 − un1 (18)

un+1
2 = 2un+1

2 − un2 (19)

where u is the primal variable and ξ is the dual variable.

2. For u fixed, minimize with respect to v the following functional∫
Ω

λ|ρ(v)|+
∫
Ω

1

2θ
(u− v)

2
dx. (20)

Since (20) does not depend on spatial derivatives on v, a simple thresholding
step gives us an explicit solution [10].

Proposition 2. The minimum of (20) with respect to v is

v = u+


λθ∇I1 if ρ(u) < −λθ|∇I1|2
−λθ∇I1 if ρ(u) > λθ|∇I1|2
−ρ(u) ∇I1|∇I1|2 if |ρ(u)| ≤ λθ|∇I1|2

(21)

The whole minimization algorithm is presented in Algorithm 1.
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Fig. 1. Results on the MPI Sintel training set “Bandage-2” (clean version). From top
to bottom and from left to right: (a) First frame, (b) optical flow ground truth, (c)
estimated optical flow using the TV-L1 method, (d) estimated optical flow using an
L1 data term and the proposed regularizer.

4 Implementation

The minimization of (11) to estimate the optical flow is embedded into a coarse-
to-fine multi-level approach in order to be able to deal with large motion fields.
The numerical algorithm is summarized in Algorithm 1. The image gradient is
computed using a five-point stencil as in [5]. Image warpings use bicubic inter-
polation. Our code is written in C. To do a fair comparison against the TV-L1

optical flow model of [10], we took the implementation of [21], which is also
written in C, and changed their numerical scheme by a primal-dual approach
as in our case. The algorithm parameters are initialised with the same default
settings. Both time-steps are set to τ = σ = 0.125 to ensure the convergence.
As stopping criterion both optical flow methods use the infinite-norm between
two consecutive values of u with a threshold of 0.01. The coupling parameter θ
is equal to 0.3. Input images have been normalized between [0, 1]. The fidelity
data term weight λ is set to 40. Let us remark that the parameters value have
been fixed to ensure a good performance for all the sequences of the Middlebury
Dataset. All the experiments use the previous parameters even if the images
come from another database.

5 Experiments

In this section we provide two sets of experiments. The first one is designed to
verify the good performance of the new regularization term over different types
of movements. The second one shows the properties of the presented term to
recover rotation movements. We use both real and synthetic images, and two
databases: the Middlebury flow benchmark [22] and some images from the MPI
Sintel Flow Dataset [23].
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Input : Two consecutive frames I1, I2
Output: Flow field u

Compute down-scaled images Is1 , I
s
2 for s = 1, . . . , Nscales;

Initialize uNscales = ξNscales = vNscales = 0;
for s← Nscales to 1 do

for w ← 1 to Nwarps do
Compute Is1(x+ v0(x)), Isx1 (x+ v0(x)), Isy1 (x+ v0(x));
using bicubic interpolation;
while n < Nmax or tol < error do

Compute v via Prop. 2;
Compute ξ and u via Prop. 1;

end

end

end
Algorithm 1: Coarse-to-fine multi-level approach to compute optical flow

Fig. 2. Results for a pure rotation movement (3 degree anti-clockwise). From left to
right: (a) First frame. (b) Optical flow ground truth. (c) Estimated optical flow using
the TV regularizer. (d) Estimated optical flow using the proposed regularizer.

5.1 Global accuracy

In this section we compute the optical flow from a set of images from standard
datasets.

Middlebury DataSet - It contains a training set where ground truth is avail-
able. We use it to verify the accuracy of our regularization term against the
well-established TV term. In order to compare our regularizer to other high-order
regularization methods, we have implemented TGV2 (see [24]). The parameters
α0 and α1 have been chosen to ensure a good performance for all the sequences
of the Middelbury Dataset. Table 1 shows how our method improves the optical
flow maps for almost all the images by measuring the Average Angular Error
(AEE) and Average End-point Error (EPE).

MPI Sintel Flow DataSet - MPI Sintel dataset has 23 training sequences. For
every frame, there are two different images, “clean” and “final”. The difference is
that the second set adds complexity to the first one by incorporating atmospheric
effects, depth of field blur, motion blur, color correction and other details. We
evaluate the frames 32-38 from the training set “Bandage-2” (see Fig. 1). We have
chosen this sequence because the dragon’s movement is almost a pure rotation.
The quantitative results are in Table 2.
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Table 1. Error measures in the Middlebury dataset with public ground truth flow.

Middlebury Dim. Hyd. Rub. Gro2 Gro3 Urb2 Urb3 Ven.

EPE-TV 0.1537 0.2286 0.1916 0.1496 0.6808 0.3709 0.6034 0.3563

EPE-TGV 0.1405 0.2913 0.1868 0.1471 0.6255 0.3832 0.5639 0.3263

EPE-Ours 0.1393 0.2598 0.1716 0.1438 0.6113 0.3518 0.4815 0.3595

AAE-TV 2.8458◦ 2.6528◦ 6.0472◦ 2.2356◦ 6.5780◦ 2.9230◦ 5.3784◦ 5.9934◦

AAE-TGV 2.6014◦ 3.3339◦ 6.0431◦ 2.1670◦ 6.0920◦ 3.0723◦ 5.4091◦ 5.2621◦

AAE-Ours 2.5336◦ 3.0934◦ 5.6276◦ 2.1302◦ 5.9385◦ 2.7349◦ 4.7173◦ 6.1516◦

Table 2. Global error measures in images of the sequence Bandage-2 from MPI. The
first and second set of results correspond, respectively, to the “clean” and “final” frames.

Bandage− 2 I-32 I-33 I-34 I-35 I-36 I-37 I-38

EPE-TV 0.3012 0.2635 0.2281 0.1969 0.1819 0.1831 0.1744

EPE-Ours 0.2875 0.2528 0.2200 0.1871 0.1738 0.1744 0.1646

AAE-TV 4.1854◦ 4.3195◦ 4.4798◦ 4.6716◦ 4.5370◦ 4.5531◦ 4.4934◦

AAE-Ours 3.9796◦ 4.0286◦ 4.2245◦ 4.3852◦ 4.3138◦ 4.3766◦ 4.2783◦

EPE-TV 0.4871 0.4125 0.3514 0.3081 0.2788 0.2538 0.2304

EPE-Ours 0.4793 0.3833 0.3380 0.2999 0.2723 0.2464 0.2208

AAE-TV 6.7334◦ 6.6018◦ 6.7360◦ 6.9075◦ 6.6736◦ 6.3551◦ 6.0901◦

AAE-Ours 6.5131◦ 6.0037◦ 6.4608◦ 6.5416◦ 6.5060◦ 6.1108◦ 5.8036◦

Table 3. Local error measures in images of Bandage-2 from MPI dataset. The first
and second set of results correspond, respectively, to the clean and final frames.

Bandage− 2 I-32. I-33. I-34. I-35 I-36 I-37 I-38.

EPE-TV 0.6651 0.5622 0.4984 0.4209 0.4026 0.4326 0.4052

EPE-Ours 0.6095 0.5213 0.4651 0.3847 0.3631 0.3936 0.3693

AAE-TV 5.4301◦ 5.6568◦ 6.1474◦ 6.4521◦ 6.7121◦ 6.8091◦ 6.6867◦

AAE-Ours 5.1992◦ 5.4078◦ 5.9587◦ 6.1164◦ 6.2567◦ 6.4884◦ 6.3163◦

EPE-TV 0.9592 0.7842 0.7031 0.6330 0.5383 0.5389 0.4877

EPE-Ours 0.9661 0.7426 0.6839 0.6086 0.5209 0.5157 0.4575

AAE-TV 8.3658◦ 8.9096◦ 9.5192◦ 10.0930◦ 9.1798◦ 8.8827◦ 8.1718◦

AAE-Ours 8.6947◦ 8.7647◦ 9.6918◦ 9.8830◦ 9.1128◦ 8.6662◦ 7.8128◦
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Fig. 3. Color representation of the level sets of the L2 norm of the optical flow esti-
mations shown in Fig 2. From left to right: (a) ground truth, (b), TV regularizer, and
(c) proposed regularized.

5.2 Rotation movements

Our regularizer shows good performance in general movements, but it is specifi-
cally designed to appropriately handle rotation movements. This section contains
several experiments to demonstrate the performance of our term against the TV
when dealing with rotation movements in two different types of applications:
motion estimation and motion inpainting. It is easy to observe how in all the
figures the rotation movements look more realistic with the new regularizer and
present smoother transitions as well.

Optical flow estimation - The following results compare the optical flow esti-
mated by the TV−L1 model [10] against the estimation obtained by solving the
functional (11), i.e. an L1 data term plus our proposed optical flow regularizer.

First, we evaluate our optical flow algorithm on a synthetic pair of images.
The purpose of this synthetic sequence is to test the robustness to rotation
movements. Fig. 2 shows a pure anti-clockwise rotation of 3 degrees. In contrast
to the TV-L1 model, our method does not present piecewise constant zones
and it is more accurate. Table 4 shows the Average Angular Error (AEE) and
Average End-point Error (EPE) for both methods (TV-L1 and our approach).
Fig. 3 shows a color representation of the L2 norm of the optical flow and some
of its level lines. The level lines of the ground truth flow are circles since the
movement is a pure rotation. The level lines of the intensity of the estimated
optical flow with the proposed regularizer are much closer to circles than the
ones obtained from the flow estimated with the TV regularizer.

For the two databases with ground truth, MPI and Middlebury, we evaluate
some regions that contain almost a pure rotation. The column “Local” of Table
5 shows the local errors for the RubberWhale sequence and Table 3 shows the
local errors around the dragon’s head in the MPI sequence. Fig. 4 shows how
in the Army sequence the rotation movement obtained with our regularizer is
more realistic than the one obtained with the TV. Fig. 5 shows how our method
better recovers the contour of the dragon’s head and it is possible to observe
little details as the eyes or the mouth.
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Fig. 4. Army sequence from the Middlebury dataset with a rotation movement. From
left to right (a) Optical flow estimated with the TV regularizer. (b) Optical flow esti-
mated with the proposed regularizer (c) Details of the estimations using the TV (top)
and the proposed regularizer (bottom).

In Fig. 7 we present another real example which consists of a video sequence
of a double windmill captured by a camera with difficult light conditions. Each
windmill rotates in opposite directions as is shown in the first row of Fig. 7. The
last two rows of the Fig. 7 show the difference between the smooth transition of
our term (third row), which agrees with the almost radially symmetric movement
of a windmill, as opposite to the piecewise constant zones that appear due to the
TV term (second row). Fig. 6 shows this effect: it displays a color representation
of the L2 norm of the optical flow at each point and some of its level lines. Being
a rotation movement, the level lines of the motion intensity should be circles,
as in the synthetic example shown in Fig. 3. As seen in Fig. 6, the level lines of
the optical flow norm obtained with our regularizer are closer to circles than the
ones obtained with the TV, meaning that our regularization term recovers the
rotation movement in a more realistic way than the TV.

Table 4. Error measures for the synthetic images in Fig. 2 of a pure rotation.

Pure Rotation Synthetic

EPE-TV 0.0204

EPE-Ours 0.0122

AAE-TV 0.7108◦

AAE-Ours 0.4351◦

Optical flow inpainting and interpolation from sparse samples - We
have designed two proof of concept experiments to illustrate that the proposed
regularization term is able to properly recover rotation movements. In particular,
we show how it performs in reconstructing missing optical flow data and compare
it to the TV. Two different cases of missing data have been addressed: data
missing in a hole (we denote it as optical flow inpainting), and data missing
along the whole image with the exception from some sparse locations (optical
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Table 5. Local optical flow estimation error (column “Local”), inpainting error (col-
umn “Inpainting”) and interpolation error (column “Interpolation”) for RubberWhale,
from Middlebury dataset. Local errors mean that we only measure the error in a square
around the the toy wheel and the dragon’s head respectively.

RubberWhale Local Inpainting Interpolation

EPE-TV 0.8571 0.0611 0.4669

EPE-Ours 0.4374 0.0559 0.3088

AAE-TV 11.4892◦ 1.8610◦ 8.4497◦

AAE-Ours 5.9242◦ 1.8118◦ 6.9612◦

flow interpolation from sparse samples). In both cases we complete the missing
data by a diffusion of the known values. The resulting diffusion depends on the
smoothness term used in the minimization problem for recovering the data.

If we use the proposed regularizer, the minimization problem is

min
u

∫
W

∥∥∥∥1

2

(
Du+DuT

)∥∥∥∥
F

dx with u|∂W = u0|∂W , (22)

where W is the missing data domain and u0 is the known flow field in the
complement of the set W . Also, the minimization problem based on the TV is

min
u

∫
W

(|∇u1|+ |∇u2|) dx with u|∂W = u0|∂W . (23)

W is defined in the following ways for the two kind of applications:

– Optical flow inpainting - Squared patches are removed from the flow
field (and u is initialized to zero in these regions). The motion in the known
regions, u0, is the optical flow ground truth. Regions where the ground truth
is unknown also form part of the inpainting domain W , together with the
squared patches.

– Optical flow interpolation from sparse samples - We remove the op-
tical flow values in the 95% of the pixels (uniformly distributed along the
image). Therefore, W is made of this 95% of pixels. Again, u0 is defined from
the optical flow ground truth.

For testing both regularization terms we use the RubberWhale sequence from
the Middelbury dataset [22] because it contains almost a pure rotation. For
both cases of missing data we solve the minimization problems (22) and (23)
using a primal-dual approach. The resulting numerical scheme for (22) is the
one explained in Prop. 1 without the terms depending on the parameter θ and
with a final step that sets the boundary conditions (known optical flow in ∂W ).
Fig. 8, Fig. 9 and Table 5 refer to this experiment. The last row of Fig. 8
shows the regions where the optical flow is missing for both kind of applications.
Fig. 9 shows the reconstructions obtained with the two regularizers in both
experiments. Table 5 shows the quantitative results, showing that the optical flow
completion based on the proposed regularizer presents a lower reconstruction
error than the one based on the TV.
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Fig. 5. Dragon’s head zoom. First row: Optical flow with an L1 data term and (a)
the TV regularizer, (b) the proposed regularizer. Second row: EPE. (c) TV. (d) The
proposed regularizer.

6 Conclusion

We have proposed a new regularization term for optical flow models with the
properties of invariance to infinitesimal rotations and the ability to preserve
discontinuities/jumps in the flow field. The proposed regularizer has been tested
in three different kind of problems related to the optical flow: motion estimation,
motion inpainting, and motion interpolation from sparse samples. For the optical
flow estimation we combine it with an L1 data fidelity term, as in [10], and the
proposed variational problem is solved using a dual formulation. The numerical
experiments show that the proposed regularization term combined with an L1

data term improves the TV-L1 model for motion estimation. For the other two
problems, optical flow reconstruction in two different cases of missing regions,
we show that the missing information is better recovered with a functional based
on the proposed regularizer, compared to the TV regularizer. As future work we
plan to study the combination of the new regularizer with more advanced data
terms robust to illumination changes, occlusions and fast movements.
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Fig. 6. Color representation of the level sets of the L2 norm of the optical flow es-
timations shown in Fig 7. From left to right: (a) TV regularizer. (b) The proposed
regularizer.

Fig. 7. Double windmill sequence. From top to bottom: (a) Original frames, (b) TV-
L1 optical flow and (c) optical flow estimated with an L1 data term and the proposed
regularizer.
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Fig. 8. RubberWhale sequence from the Middlebury dataset with a rotation movement.
First row: (a) First frame. (b) Ground Truth. Second row: (c) Inpainting mask (in
white). (d) Missing optical flow (white pixels) and known values at sparse locations.

Fig. 9. Optical flow reconstruction in missing regions. First row (from left to right): In-
painting results. (a) TV regularizer. (b) Proposed regularizer. Second row (from left to
right): Interpolation from sparse samples (c) TV regularizer. (d) Proposed regularizer.
(e) Details, TV regularizer (top) and the proposed regularizer (bottom).
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